2023.08.26
A. Atqa, M. Yoshida, M. Wakizaka, W. Chun, A. Oda, T. Imaoka, K. Yamamoto
Chem. Commun. 2023, 59, 11947-11950.
部分的に酸化された二金属Mo–Ptサブナノ粒子(Mo4Pt8Ox)を紹介する。これは、室温および常圧で熱駆動によるCO2の水素化をCOへと実現する。機構的な研究により、CO2活性化から触媒再活性化までの反応の完全な触媒サイクルが説明された。DFT計算は、Moとの合金化がCO吸着を弱めることで活性化障壁を低くすることを明らかにした。この発見は、低エネルギーでのCO2変換の第一歩となる可能性がある。
Ultra-small Mo–Pt subnanoparticles enable CO2 hydrogenation at room temperature and atmospheric pressureWe present a partially-oxidised bimetallic Mo–Pt subnanoparticle (Mo4Pt8Ox) enabling thermally-driven CO2 hydrogenation to CO at room temperature and atmospheric pressure. A mechanistic study explained the full catalytic cycle of the reaction from CO2 activation to catalyst reactivation. DFT calculations revealed that alloying with Mo lowers the activation barrier by weakening the CO adsorption. This finding could be a first step for low-energy CO2 conversion.
2022.08.01
Q. Zou, Y. Akada, A. Kuzume, M. Yoshida, T. Imaoka, K. YamamotoBonding dissimilar elements to provide synergistic effects is an effective way to improve the performance of metal catalysts. However, as the properties become more dissimilar, achieving synergistic effects effectively becomes more difficult due to phase separation. Here we describe a comprehensive study on how subnanoscale alloying is always effective for inter-elemental synergy. Thirty-six combinations of both bimetallic subnanoparticles (SNPs) and nanoparticles (NPs) were studied systematically using atomic-resolution imaging and catalyst benchmarking based on the hydrogen evolution reaction (HER). Results revealed that SNPs always produce greater synergistic effects than NPs, the greatest synergistic effect was found for the combination of Pt and Zr. The atomic-scale miscibility and the associated modulation of electronic states at the subnanoscale were much different from those at the nanoscale, which was observed by annular-dark-field scanning transmission electron microscopy (ADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively.
2022.02.24
T. Kambe, S. Imaoka, M. Shimizu, R. Hosono, D. Yan, H. Taya, M. Katakura, H. Nakamura, S. Kubo, A. Shishido, K. YamamotoBorophene has been recently proposed as a next-generation two-dimensional material with promising electronic and optical properties. However, its instability has thus far limited its large-scale applications. Here, we investigate a liquid-state borophene analogue with an ordered layer structure derived from two-dimensional borophene oxide. The material structure, phase transition features and basic properties are revealed by using X-ray analysis, optical and electron microscopy, and thermal characterization. The obtained liquid crystal exhibits high thermal stability at temperatures up to 350 °C and an optical switching behaviour driven by a low voltage of 1 V.
2020.11.07
Y. Akanuma, T. Imaoka, H. Sato, K. YamamotoThere has been controversy surrounding the roles of the metal core (metal–metal interaction) and the shell (metal–ligand interaction) in photoluminescence of ligand-protected metal nanoclusters. We have discovered aggregation-induced room-temperature phosphorescence of a platinum–thiolate complex and its silver ion inclusion complex (a silver-doped platinum sub-nanocluster). The inclusion of silver ion boosted the photoluminescent quantum yield by 18 times. Photophysical measurements indicate that the rate of nonradiative decay was slower for the silver-doped platinum sub-nanocluster. DFT calculations showed that the LUMO, which had the main contribution from Ag s-orbital and Pt d-orbitals, played a critical role in suppressing the structural distortion at the excited state. This work will hopefully stimulate more research on designing strategies based on molecular orbitals of atomicity-precise luminescent multimetallic nanoclusters.
2020.09.08
T. Tsukamoto, A. Kuzume, M. Nagasaka, T. Kambe, K. YamamotoSubnanoparticles (SNPs) exhibit unique properties and functions due to their extremely small particle sizes which extend into the quantum scale. Although the synthesis of SNPs requiring precise control of atomicity and composition has not been accomplished, we recently developed an atom-hybridization method (AHM) that realizes such atomic-level control using a macromolecular template. As a next step in the quest for innovative quantum materials, the practical creation of functional subnanomaterials will become a central subject. In this study, we established a new screening technique for functional SNPs by focusing on the simple indium–tin binary system with sequential compositions using the latest AHM. As a result, it was revealed that a thermodynamically unstable indium species was produced only at a certain composition leading to a durable luminescent function. Such a phenomenon in subnanosized substances will play an important role in the development of the as-yet-unknown field of quantum materials.
2020.08.26
T. Moriai, T. Tsukamoto, M. Tanabe, T. Kambe, K. Yamamotoサブナノメートル(約1 nm)スケールの粒子科学は、世界中の注目を集めている。しかし、サブナノ粒子(SNPs)の精密な合成の技術的難しさのため、未踏の領域であった。最近、適切に設計されたマクロ分子をテンプレートとして使用することにより、SNPsを精密に合成する「原子ハイブリッド化法(AHM)」を開発した。現在、AHMによって得られた合金SNPsの化学反応性を調査した。貴金属元素に注目し、これらのSNPsが触媒するオレフィンの酸化反応を系統的に評価した。SNPsは、従来の触媒よりも穏やかな条件下でも高い触媒性能を示した。さらに、複数の元素のハイブリッド化により、ヒドロペルオキシド誘導体の形成に対するターンオーバー周波数と選択性が向上した。材料の小型化とハイブリッド化の観点から、一般に不安定なヒドロペルオキシドを提供するユニークな量子サイズ触媒について議論する。
Selective Hydroperoxygenation of Olefins Realized by a Coinage Multimetallic 1-Nanometer CatalystThe science of particles on a sub-nanometer (ca. 1 nm) scale has attracted worldwide attention. However, it has remained unexplored because of the technical difficulty in the precise synthesis of sub-nanoparticles (SNPs). We recently developed the “atom-hybridization method (AHM)” for the precise synthesis of SNPs by using a suitably designed macromolecule as a template. We have now investigated the chemical reactivity of alloy SNPs obtained by the AHM. Focusing on the coinage metal elements, we systematically evaluated the oxidation reaction of an olefin catalyzed by these SNPs. The SNPs showed high catalytic performance even under milder conditions than those used with conventional catalysts. Additionally, the hybridization of multiple elements enhanced the turnover frequency and the selectivity for the formation of the hydroperoxide derivative. We discuss the unique quantum-sized catalysts providing generally unstable hydroperoxides from the viewpoint of the miniaturization and hybridization of materials.
2020.02.06
K. Sonobe, M. Tanabe, K. Yamamoto超小型粒子サイズ(<1 nm)のサブナノ粒子(SNPs)は、ナノ粒子よりも優れた触媒活性を提供する可能性がある。デンドリックマクロ分子リアクターを使用して調製されたジルコニア支持のサイズ制御されたCunOx(n = 12、28、および60)材料は、Cu 2p3/2領域のピーク強度に基づいて粒子サイズの減少に伴うCu–O結合のイオン性の増加を示した。超小型銅酸化物におけるCu–O結合の分極は、芳香環に結合したCH3基の好気的酸化においてサイズ依存的な触媒活性を提供する。最小のCu12Ox材料は、顕著な失活なしに優れた高いターンオーバー数(TON = 40,206)を達成した。
Enhanced Catalytic Performance of Subnano Copper Oxide ParticlesSubnanoparticles (SNPs) with ultrasmall particle sizes (<1 nm) have potential to provide catalytic activity that is superior to that of nanoparticles. Size-controlled CunOx (n = 12, 28, and 60) materials supported on zirconia, prepared using a dendritic macromolecular reactor, exhibited increased ionicity of the Cu–O bonds with a decrease in size of the particles, which was suggested on the basis of the peak intensity in the Cu 2p3/2 region. The polarization of the Cu–O bonds in the ultrasmall copper oxides provides size-dependent catalytic activity in aerobic oxidation of the CH3 group bonded with aromatic rings. The smallest Cu12Ox materials achieved an excellent large turnover number (TON = 40 206) without any significant deactivation.
2019.08.19
T. Tsukamoto, N. Haruta, T. Kambe, A. Kuzume, K. Yamamoto
Nature Commun. 2019, 10, 3727.
周期表は、常に多くの元素の発見に貢献してきた。原子よりも大規模な物質に対して、同様の原理は存在しないのであろうか?ジェリウムモデルに基づいて、多くの安定した物質(クラスターなど)が予測されており、通常これらの構造はほぼ球状であると仮定されている。ジェリウムモデルは、二十面体クラスターのような準球状クラスターを説明するのに効果的である。このモデルの範囲を広げるために、我々は対称性適応軌道モデルを提案し、低次の構造対称性による電子軌道のエネルギー準位の分裂を明示的に考慮する。この改良により、特定の周期性に従うさまざまな形状の安定したクラスターが豊富に存在する可能性が示唆される。多くの既存の物質も同じ規則に従っている。したがって、同じ対称性を持つすべての物質は、元素の周期表に類似した周期的な枠組みに統一され、不明の物質を見つけるための有用な指針として機能するであろう。Periodicity of molecular clusters based on symmetry-adapted orbital modelThe periodic table has always contributed to the discovery of a number of elements. Is there no such principle for larger-scale substances than atoms? Many stable substances such as clusters have been predicted based on the jellium model, which usually assumes that their structures are approximately spherical. The jellium model is effective to explain subglobular clusters such as icosahedral clusters. To broaden the scope of this model, we propose the symmetry-adapted orbital model, which explicitly takes into account the level splittings of the electronic orbitals due to lower structural symmetries. This refinement indicates the possibility of an abundance of stable clusters with various shapes that obey a certain periodicity. Many existing substances are also governed by the same rule. Consequently, all substances with the same symmetry can be unified into a periodic framework in analogy to the periodic table of elements, which will act as a useful compass to find missing substances.
2018.11.14
M. Huda, K. Minamisawa, T. Tsukamoto, M. Tanabe, K. Yamamoto2018.09.26
N. Haruta, T. Tsukamoto, A. Kuzume, T. Kambe, K. Yamamoto
Nature Commun. 2018, 9, 3758.
球状原子は最も高い幾何学的対称性を持つ。この対称性により、原子軌道は高度に縮退し、閉殻安定性と磁性をもたらす。幾何学的制約により、これ以上の縮退度を持つ物質は知られていない。ここで、特定の四面体構造を持つ現実的なマグネシウム、亜鉛、およびカドミウムクラスターが球状対称性よりも異常に高い縮退度を持つことを提案する。密度汎関数理論計算と単純なタイトバインディングモデルを組み合わせることで、これらの縮退は動的対称性に起因することを示す。この縮退条件は、原子間パラメータに関する優雅な数学的シーケンスとして完全に特定される。動的対称性の導入は、超縮退軌道を持つ新しいカテゴリの物質の発見につながるであろう。Nanomaterials design for super-degenerate electronic state beyond the limit of geometrical symmetrySpherical atoms have the highest geometrical symmetry. Due to this symmetry, atomic orbitals are highly degenerate, leading to closed-shell stability and magnetism. No substances with greater degrees of degeneracy are known, due to geometrical limitations. We now propose that realistic magnesium, zinc, and cadmium clusters having a specific tetrahedral framework possess anomalous higher-fold degeneracies than spherical symmetry. Combining density functional theory calculations with simple tight-binding models, we demonstrate that these degeneracies can be attributed to dynamical symmetry. The degeneracy condition is fully identified as an elegant mathematical sequence involving interatomic parameters. The introduction of dynamical symmetry will lead to the discovery of a novel category of substances with super-degenerate orbitals.