トピックス

財経新聞「複雑な分子にも周期律があった!…」

2019.09.11

Nature Communications誌に掲載された「複数の原子からなる高次の物質の周期律を発見」に関する記事が9月4日発行の財経新聞(Web)に掲載されました。
財経新聞
東工大ニュース
Nature Communications
財経新聞 (2019年9月4日)

対称性適応軌道モデルに基づく分子クラスターの周期性

2019.08.19

T. Tsukamoto, N. Haruta, T. Kambe, A. Kuzume, K. Yamamoto
Nature Commun. 2019, 10, 3727. 周期表は、常に多くの元素の発見に貢献してきた。原子よりも大規模な物質に対して、同様の原理は存在しないのであろうか?ジェリウムモデルに基づいて、多くの安定した物質(クラスターなど)が予測されており、通常これらの構造はほぼ球状であると仮定されている。ジェリウムモデルは、二十面体クラスターのような準球状クラスターを説明するのに効果的である。このモデルの範囲を広げるために、我々は対称性適応軌道モデルを提案し、低次の構造対称性による電子軌道のエネルギー準位の分裂を明示的に考慮する。この改良により、特定の周期性に従うさまざまな形状の安定したクラスターが豊富に存在する可能性が示唆される。多くの既存の物質も同じ規則に従っている。したがって、同じ対称性を持つすべての物質は、元素の周期表に類似した周期的な枠組みに統一され、不明の物質を見つけるための有用な指針として機能するであろう。Periodicity of molecular clusters based on symmetry-adapted orbital modelThe periodic table has always contributed to the discovery of a number of elements. Is there no such principle for larger-scale substances than atoms? Many stable substances such as clusters have been predicted based on the jellium model, which usually assumes that their structures are approximately spherical. The jellium model is effective to explain subglobular clusters such as icosahedral clusters. To broaden the scope of this model, we propose the symmetry-adapted orbital model, which explicitly takes into account the level splittings of the electronic orbitals due to lower structural symmetries. This refinement indicates the possibility of an abundance of stable clusters with various shapes that obey a certain periodicity. Many existing substances are also governed by the same rule. Consequently, all substances with the same symmetry can be unified into a periodic framework in analogy to the periodic table of elements, which will act as a useful compass to find missing substances.

マイナビニュースに掲載されました

2019.05.24

「ERATOプロジェクトのプレスセミナー」に関する記事がマイナビニュースに掲載されました。
マイナビニュース
東工大ニュース

ERATOプロジェクトのプレスセミナーを開催しました

2019.05.22

本学すずかけ台キャンパスにて、山元教授・塚本助教がERATOプロジェクトのプレスセミナーを開催しました。プレスセミナーには5社が参加しました。また、今岡准教授から、透過型電子顕微鏡を用いたサブナノ粒子観察のデモンストレーションが公開されました。


東工大ニュース

多金属クラスター合成のための原子ハイブリッド化

2018.10.30

T. Tsukamoto, T. Kambe, A. Nakao, T. Imaoka, K. Yamamoto
Nature Commun. 2018, 9, 3873.
多元合金ナノ粒子の新たな合成手法を開発  サブナノメートルスケールの金属クラスターの化学は、特に多金属クラスターにおいて、サイズと組成を制御して合成することが難しいため、まだ十分に理解されていない。多金属サブナノクラスターのテンプレート合成は、マクロ分子テンプレートとしてフェニルアゾメチンデンドリマーを使用することによって達成される。その分子内ポテンシャル勾配により、最大8元素を含む金属前駆体複合体をテンプレート上に正確に取り込むことが可能である。この方法の有用性は、5元素(Ga1In1Au3Bi2Sn6)から成る多金属サブナノクラスターを合成することで実証されている。このクラスターのサイズと組成は正確に制御され、関与する金属は互いに合金化される。このアプローチは、異なる金属をさまざまな組み合わせで簡単にブレンドし、サブナノメートルスケールの新しい材料を作成する能力を提供し、化学の分野における新しい領域の発展につながるであろう。
Atom-hybridization for Synthesis of Polymetallic ClustersThe chemistry of metal clusters on the sub-nanometer scale is not yet well understood because metal clusters, especially multimetallic clusters, are difficult to synthesize with control over size and composition. The template synthesis of multimetallic sub-nanoclusters is achieved using a phenylazomethine dendrimer as a macromolecular template. Its intramolecular potential gradient allows the precise uptake of metal precursor complexes containing up to eight elements on the template. The usefulness of this method is demonstrated by synthesizing multimetallic sub-nanoclusters composed of five elements (Ga1In1Au3Bi2Sn6). The size and composition of this cluster can be precisely controlled and the metals involved are alloyed with each other. This approach provides the ability to easily blend different metals in various combinations to create new materials on the sub-nanometer scale, which will lead to the development of a new area in the field of chemistry.


日刊産業新聞「多元合金ナノ粒子…」

2018.10.30

Nature Communications誌に掲載された「多元合金ナノ粒子の新たな合成手法を開発」に関する記事が9月26日発行の日刊産業新聞(12面)に掲載されました。

東工大ニュース
JSTプレスリリース
Nature Communications
日刊産業新聞 (2018年9月26日 12面)

幾何学的対称性の限界を超える超縮退電子状態のためのナノ材料設計

2018.09.26

N. Haruta, T. Tsukamoto, A. Kuzume, T. Kambe, K. Yamamoto
Nature Commun. 2018, 9, 3758. 球状原子は最も高い幾何学的対称性を持つ。この対称性により、原子軌道は高度に縮退し、閉殻安定性と磁性をもたらす。幾何学的制約により、これ以上の縮退度を持つ物質は知られていない。ここで、特定の四面体構造を持つ現実的なマグネシウム、亜鉛、およびカドミウムクラスターが球状対称性よりも異常に高い縮退度を持つことを提案する。密度汎関数理論計算と単純なタイトバインディングモデルを組み合わせることで、これらの縮退は動的対称性に起因することを示す。この縮退条件は、原子間パラメータに関する優雅な数学的シーケンスとして完全に特定される。動的対称性の導入は、超縮退軌道を持つ新しいカテゴリの物質の発見につながるであろう。Nanomaterials design for super-degenerate electronic state beyond the limit of geometrical symmetrySpherical atoms have the highest geometrical symmetry. Due to this symmetry, atomic orbitals are highly degenerate, leading to closed-shell stability and magnetism. No substances with greater degrees of degeneracy are known, due to geometrical limitations. We now propose that realistic magnesium, zinc, and cadmium clusters having a specific tetrahedral framework possess anomalous higher-fold degeneracies than spherical symmetry. Combining density functional theory calculations with simple tight-binding models, we demonstrate that these degeneracies can be attributed to dynamical symmetry. The degeneracy condition is fully identified as an elegant mathematical sequence involving interatomic parameters. The introduction of dynamical symmetry will lead to the discovery of a novel category of substances with super-degenerate orbitals.